The Salmonella Genomic Island 1 Is Specifically Mobilized In Trans by the IncA/C Multidrug Resistance Plasmid Family

نویسندگان

  • Gregory Douard
  • Karine Praud
  • Axel Cloeckaert
  • Benoît Doublet
چکیده

BACKGROUND The Salmonella genomic island 1 (SGI1) is a Salmonella enterica-derived integrative mobilizable element (IME) containing various complex multiple resistance integrons identified in several S. enterica serovars and in Proteus mirabilis. Previous studies have shown that SGI1 transfers horizontally by in trans mobilization in the presence of the IncA/C conjugative helper plasmid pR55. METHODOLOGY/PRINCIPAL FINDINGS Here, we report the ability of different prevalent multidrug resistance (MDR) plasmids including extended-spectrum β-lactamase (ESBL) gene-carrying plasmids to mobilize the multidrug resistance genomic island SGI1. Through conjugation experiments, none of the 24 conjugative plasmids tested of the IncFI, FII, HI2, I1, L/M, N, P incompatibility groups were able to mobilize SGI1 at a detectable level (transfer frequency <10(-9)). In our collection, ESBL gene-carrying plasmids were mainly from the IncHI2 and I1 groups and thus were unable to mobilize SGI1. However, the horizontal transfer of SGI1 was shown to be specifically mediated by conjugative helper plasmids of the broad-host-range IncA/C incompatibility group. Several conjugative IncA/C MDR plasmids as well as the sequenced IncA/C reference plasmid pRA1 of 143,963 bp were shown to mobilize in trans SGI1 from a S. enterica donor to the Escherichia coli recipient strain. Depending on the IncA/C plasmid used, the conjugative transfer of SGI1 occurred at frequencies ranging from 10(-3) to 10(-6) transconjugants per donor. Of particular concern, some large IncA/C MDR plasmids carrying the extended-spectrum cephalosporinase bla(CMY-2) gene were shown to mobilize in trans SGI1. CONCLUSIONS/SIGNIFICANCE The ability of the IncA/C MDR plasmid family to mobilize SGI1 could contribute to its spread by horizontal transfer among enteric pathogens. Moreover, the increasing prevalence of IncA/C plasmids in MDR S. enterica isolates worldwide has potential implications for the epidemic success of the antibiotic resistance genomic island SGI1 and its close derivatives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella Genomic Island 1

The multidrug resistance Salmonella Genomic Island 1 (SGI1) is an integrative mobilizable element identified in several enterobacterial pathogens. This chromosomal island requires a conjugative IncA/C plasmid to be excised as a circular extrachromosomal form and conjugally mobilized in trans. Preliminary observations suggest stable maintenance of SGI1 in the host chromosome but paradoxically al...

متن کامل

Salmonella genomic island 1 (SGI1) reshapes the mating apparatus of IncC conjugative plasmids to promote self-propagation

IncC conjugative plasmids and Salmonella genomic island 1 (SGI1) and relatives are frequently associated with multidrug resistance of clinical isolates of pathogenic Enterobacteriaceae. SGI1 is specifically mobilized in trans by IncA and IncC plasmids (commonly referred to as A/C plasmids) following its excision from the chromosome, an event triggered by the transcriptional activator complex Ac...

متن کامل

Determination and Analysis of the Putative AcaCD-Responsive Promoters of Salmonella Genomic Island 1

The integrative genomic island SGI1 and its variants confer multidrug resistance in numerous Salmonella enterica serovariants and several Proteus mirabilis and Acinetobacter strains. SGI1 is mobilized by the IncA/C family plasmids. The island exploits not only the conjugation apparatus of the plasmid, but also utilizes the plasmid-encoded master regulator AcaCD to induce the excision and format...

متن کامل

The Master Activator of IncA/C Conjugative Plasmids Stimulates Genomic Islands and Multidrug Resistance Dissemination

Dissemination of antibiotic resistance genes occurs mostly by conjugation, which mediates DNA transfer between cells in direct contact. Conjugative plasmids of the IncA/C incompatibility group have become a substantial threat due to their broad host-range, the extended spectrum of antimicrobial resistance they confer, their prevalence in enteric bacteria and their very efficient spread by conju...

متن کامل

IncA/C Conjugative Plasmids Mobilize a New Family of Multidrug Resistance Islands in Clinical Vibrio cholerae Non-O1/Non-O139 Isolates from Haiti

UNLABELLED Mobile genetic elements play a pivotal role in the adaptation of bacterial populations, allowing them to rapidly cope with hostile conditions, including the presence of antimicrobial compounds. IncA/C conjugative plasmids (ACPs) are efficient vehicles for dissemination of multidrug resistance genes in a broad range of pathogenic species of Enterobacteriaceae ACPs have sporadically be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010